Computation of Z3-invariants of real quadratic fields

نویسنده

  • Hisao Taya
چکیده

Let k be a real quadratic field and p an odd prime number which splits in k. In a previous work, the author gave a sufficient condition for the Iwasawa invariant λp(k) of the cyclotomic Zp-extension of k to be zero. The purpose of this paper is to study the case p = 3 of this result and give new examples of k with λ3(k) = 0, by using information on the initial layer of the cyclotomic Z3-extension of k.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the real quadratic fields with certain continued fraction expansions and fundamental units

The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element  where $dequiv 2,3( mod  4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and  $n_d$ and $m_d...

متن کامل

The parallelized Pollard kangaroo method in real quadratic function fields

We show how to use the parallelized kangaroo method for computing invariants in real quadratic function fields. Specifically, we show how to apply the kangaroo method to the infrastructure in these fields. We also show how to speed up the computation by using heuristics on the distribution of the divisor class number, and by using the relatively inexpensive baby steps in the real quadratic mode...

متن کامل

Heuristics for class numbers and lambda invariants

Let K = Q( √ −d) be an imaginary quadratic field and let Q( √ 3d) be the associated real quadratic field. Starting from the Cohen-Lenstra heuristics and Scholz’s theorem, we make predictions for the behaviors of the 3-parts of the class groups of these two fields as d varies. We deduce heuristic predictions for the behavior of the Iwasawa λ-invariant for the cyclotomic Z3extension of K and test...

متن کامل

A capitulation problem and Greenberg's conjecture on real quadratic fields

We give a sufficient condition in order that an ideal of a real quadratic field F capitulates in the cyclotomic Z3-extension of F by using a unit of an intermediate field. Moreover, we give new examples of F ’s for which Greenberg’s conjecture holds by calculating units of fields of degree 6, 18, 54

متن کامل

On the Mathematics and Physics of High Genus Invariants

This paper wishes to foster communication between mathematicians and physicists working in mirror symmetry and orbifold Gromov-Witten theory. We provide a reader friendly review of the physics computation in [ABK06] that predicts Gromov-Witten invariants of [C/Z3] in arbitrary genus, and of the mathematical framework for expressing these invariants as Hodge integrals. Using geometric properties...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 1996